
Exercise set 1

1 Experimental Weir equation

Use the Π theorem and the following experimental table to find the relation between the flow rate Q and the crest height H for a Weir of width L = 1 m.

Н	Q
$[10^{-2} \text{m}]$	$[10^{-3} \text{m}^3/\text{s}]$
2	5.26
4	14.88
6	27.34
8	42.12
10	58.83
12	77.33
14	97.45
16	119.06
18	142.07
20	166.40

<u>Hint:</u> Assume the functional dependence Q(H, g, L). Head losses due to dissipation will be included in a phenomenological coefficient.

2 "Ideal" Weir equation

Using the Bernoulli equation derive the Weir equation under the following simplifying assumptions:

- the pressure throughout the nappe is atmospheric
- · head losses and surface tension can be neglected
- the streamline above crest is horizontal

Compare this result with the experimental law derived in Problem 1.